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Abstract

R package limSolve (Soetaert, Van den Meersche, and van Oevelen 2009) solves linear
inverse models (LIM), consisting of linear equality and or linear inequality conditions,
which may be supplemented with approximate linear equations, or a target (cost, profit)
function. Depending on the determinacy of these models, they can be solved by least
squares or linear programming techniques, by calculating ranges of unknowns or by ran-
domly sampling the feasible solution space (Van den Meersche, Soetaert, and Van Oevelen
2009).

Amongst the possible scientific applications are: food web quantification (ecology),
flux balance analysis (e.g. quantification of metabolic networks, systems biology), com-
positional estimation (ecology, chemistry,...), and operations research problems. Package
limSolve contains examples of these four application domains.

In addition, limSolve also contains special-purpose solvers for sparse linear equations
(banded, tridiagonal, block diagonal). ∗

Keywords: Linear inverse models, food web models, flux balance analysis, linear programming,
quadratic programming, R.

1. Introduction
In matrix notation, linear inverse problems are defined as: 1

A · x ≃ b (1)
E · x = f (2)

G · x ≥ h (3)

There are three sets of linear equations: equalities that have to be met as closely as possible
(1), equalities that have to be met exactly (2) and inequalities (3).
Depending on the active set of equalities (2) and constraints (3), the system may either
be underdetermined, even determined, or overdetermined. Solving these problems requires
different mathematical techniques.

1notations: vectors and matrices are in bold; scalars in normal font. Vectors are indicated with a small
letter; matrices with capital letter.
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2. Even determined systems
An even determined problem has as many (independent and consistent) equations as un-
knowns. There is only one solution that satisfies the equations exactly.
Even determined systems that do not comprise inequalities, can be solved with R function
solve, or -more generally- with limSolve function Solve. The latter is based on the Moore-
Penrose generalised inverse method, and can solve any linear system of equations.
In case the model is even determined, and if E is square and positive definite, Solve returns
the same solution as function solve. The function uses function ginv from package MASS
(Venables and Ripley 2002).
Consider the following set of linear equations:

3 · x1 +2 · x2 +x3 = 2
x1 = 1
2 · x1 +2 · x3 = 8

which, in matrix notation is:  3 2 1
1 0 0
2 0 2

 · X =

 2
1
8


where X = [x1, x2, x3]T .
In R we write:

> E <- matrix(nrow = 3, ncol = 3,
+ data = c(3, 1, 2, 2, 0, 0, 1, 0, 2))
> F <- c(2, 1, 8)
> solve(E, F)

[1] 1 -2 3

> Solve(E, F)

[1] 1 -2 3

In the next example, an additional equation, which is a linear combination of the first two is
added to the model (i.e. eq4 = eq1 + eq2).
As one set of equations is redundant, this problem is equivalent to the previous one. It is
even determined although it contains 4 equations and only 3 unknowns.
As the input matrix is not square, this model can only be solved with function Solve

3 2 1
1 0 0
2 0 2
4 2 1

 · X =


2
1
8
3
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> E2 <- rbind(E, E[1, ] + E[2, ])
> F2 <- c(F, F[1] + F[2])
> #solve(E2,F2) # error
> Solve(E2, F2)

[1] 1 -2 3

3. Overdetermined systems
Overdetermined linear systems contain more independent equations than unknowns. In this
case, there is only one solution in the least squares sense, i.e. a solution that satisfies:

min
x

∥A · x − b∥2

.
The least squares solution can be singled out by function lsei (least squares with equalities
and inequalities).
If argument fulloutput is TRUE, this function also returns the parameter covariance matrix,
which gives indication on the confidence interval and relations among the estimated unknowns.

3.1. Equalities only

If there are no inequalities, then the least squares solution can also be estimated with Solve.
The following problem: 

3 2 1
1 0 0
2 0 2
0 1 0

 · X =


2
1
8
3


is solved in R as follows:

> A <- matrix(nrow = 4, ncol = 3,
+ data = c(3, 1, 2, 0, 2, 0, 0, 1, 1, 0, 2, 0))
> B <- c(2, 1, 8, 3)
> lsei(A = A, B = B, fulloutput = TRUE, verbose = FALSE)

$X
[1] -1.1621621 0.8378378 4.8918918

$residualNorm
[1] 0

$solutionNorm
[1] 10.81081

$IsError
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[1] FALSE

$type
[1] "lsei"

Here the residualNorm is the sum of absolute values of the residuals of the equalities that
have to be met exactly (E · x = f) and of the violated inequalities (G · x ≥ h). As in this
case, there are none of those, this quantity is 0.
The solutionNorm is the value of the minimised quadratic function at the solution, i.e. the
value of ∥A · x − b∥2.
The covar is the variance-covariance matrix of the unknowns. RankEq and RankApp give the
rank of the equalities and of the approximate equalities respectively.
Alternatively, the problem can be solved by Solve:

> Solve(A,B)

[1] -1.1621622 0.8378378 4.8918919

3.2. Equalities and inequalities
If, in addition to the equalities, there are also inequalities, then lsei is the only method to
find the least squares solution.
With the following inequalities:

x1 − 2 · x2 < 3
x1 − x3 > 2

the R-code becomes:

> G <- matrix(nrow = 2, ncol = 3, byrow = TRUE,
+ data = c(-1, 2, 0, 1, 0, -1))
> H <- c(-3, 2)
> lsei(A = A, B = B, G = G, H = H, verbose = FALSE)

$X
[1] 2.04142012 -0.47928994 0.04142012

$residualNorm
[1] 0

$solutionNorm
[1] 38.17751

$IsError
[1] FALSE

$type
[1] "lsei"
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4. Underdetermined systems
Underdetermined linear systems contain less independent equations than unknowns. If the
equations are consistent, there exist an infinite amount of solutions. To solve such models,
there are several options:

• ldei - finds the "least distance" (or parsimonious) solution, i.e. the one where the sum
of squared unknowns is minimal

• lsei- minimises some other set of linear functions (A · x ≃ b) in a least squares sense.

• linp - finds the solution where one linear function (i.e. the sum of flows) is either min-
imized (a "cost" function) or maximized (a "profit" function). Uses linear programming.

• xranges - finds the possible ranges ([min,max]) for each unknown.

• xsample - randomly samples the solution space in a Bayesian way. This method returns
the conditional probability density function for each unknown (Van den Meersche et al.
2009).

4.1. Equalities only

We start with an example including only equalities.

3 · x1 +2 · x2 +x3 = 2
x1 = 1

Functions Solve and ldei retrieve the parsimonious solution, i.e. the solution for which∑
x2

i is minimal.

> E <- matrix(nrow = 2, ncol = 3,
+ data = c(3, 1, 2, 0, 1, 0))
> F <- c(2, 1)
> Solve(E, F)

[1] 1.0 -0.4 -0.2

> ldei(E = E, F = F)$X

[1] 1.0 -0.4 -0.2

It is slightly more complex to select the parsimonious solution using lsei. Here the approxi-
mate equations (A, the identity matrix, and b) have to be specified.

> lsei(E = E, F = F, A = diag(3), B = rep(0, 3), verbose = FALSE)$X

[1] 1.0 -0.4 -0.2
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Figure 1: Random sample of the underdetermined system including only equalities. See text
for explanation.

It is also possible to randomly sample the solution space. This demonstrates that all valid
solutions of x2 and x3 are located on a line (figure 1).

> xs <- xsample(E = E, F = F, iter = 500)$X
> plot(xs[ ,2], xs[ ,3])

4.2. Equalities and inequalities
Consider the following set of linear equations:

3 · x1 +2 · x2 +x3 +4 · x4 = 2
x1 +x2 +x3 +x4 = 2

complemented with the inequalities:

2 · x1 +x2 +x3 +x4 ≥ −1
−1 · x1 +3 · x2 +2 · x3 +x4 ≥ 2
−1 · x1 +x3 ≥ 1

As before, the parsimonious solution (that minimises the sum of squared flows) can be
found by functions ldei and lsei.

> E <- matrix(ncol = 4, byrow = TRUE,
+ data = c(3, 2, 1, 4, 1, 1, 1, 1))
> F <- c(2, 2)
> G <-matrix(ncol = 4, byrow = TRUE,
+ data = c(2, 1, 1, 1, -1, 3, 2, 1, -1, 0, 1, 0))
> H <- c(-1, 2, 1)
> ldei(E, F, G = G, H = H)$X
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Figure 2: Parsimonious solution and ranges of the underdetermined system including equali-
ties and inequalities. See text for explanation.

[1] 0.2 0.8 1.4 -0.4

> pars <- lsei(E, F, G = G, H = H, A = diag(nrow = 4), B = rep(0, 4))$X
> pars

[1] 0.2 0.8 1.4 -0.4

We can also estimate the ranges (minimal and maximal values) of all unknowns using function
xranges.

> (xr <- xranges(E, F, G = G, H = H))

min max
[1,] -3.00 0.80
[2,] -6.75 7.50
[3,] -2.00 7.50
[4,] -0.50 4.25

The results are conveniently plotted using R function dotchart (figure 2). We plot the
parsimonious solution as a point, the range as a horizontal line.

> dotchart(pars, xlim = range(c(pars,xr)), label = paste("x", 1:4, ""))
> segments(x0 = xr[ ,1], x1 = xr[ ,2], y0 = 1:nrow(xr), y1 = 1:nrow(xr))

A random sample of the infinite amount of solutions is generated by function xsample
(Van den Meersche et al. 2009). For small problems, the coordinates directions algorithm
("cda") is a good choice.

> xs <- xsample(E = E, F = F, G = G, H = H, type = "cda")$X
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Figure 3: Random sample of the underdetermined system including equalities and inequalities.
See text for explanation.

To visualise its output, we use R function pairs, with a density function on the diagonal,
and without plotting the upper panel (figure 3).

> panel.dens <- function(x, ...) {
+ usr <- par("usr")
+ on.exit(par(usr))
+ par(usr = c(usr[1:2], 0, 1.5) )
+ DD <- density(x)
+ DD$y<- DD$y/max(DD$y)
+ polygon(DD, col = "grey")
+ }
> pairs(xs, pch = ".", cex = 2, upper.panel = NULL, diag.panel = panel.dens)

Assume that we define the following variable:

v1 = x1 + 2 · x2 − x3 + x4 + 2
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We can use functions varranges and varsample to estimate its ranges and create a random
sample respectively.
Variables are written as a matrix equation:

Va · x = Vb

> Va <- c(1, 2, -1, 1)
> Vb <- -2
> varranges(E, F, G = G, H = H, EqA = Va, EqB = Vb)

min max
[1,] -17.75 15.5

> summary(varsample(xs, EqA = Va, EqB = Vb))

V1
Min. :-17.00099
1st Qu.: -4.85051
Median : 0.01751
Mean : -0.38649
3rd Qu.: 4.25676
Max. : 14.96485

4.3. Equalities, inequalities and approximate equations

The following problem

3 · x1 +2 · x2 +x3 +4 · x4 = 2
x1 +x2 +x3 +x4 = 2

2 · x1 +x2 +x3 +x4 ≥ −1
−1 · x1 +3 · x2 +2 · x3 +x4 ≥ 2
−1 · x1 +x3 ≥ 1

2 · x1 +2 · x2 +x3 +6 · x4 ≃ 1
x1 −x2 +x3 −x4 ≃ 2

is implemented and solved in R as:

> A <- matrix(ncol = 4, byrow = TRUE,
+ data = c(2, 2, 1, 6, 1, -1, 1, -1))
> B <- c(1, 2)
> lsei(E, F, G = G, H = H, A = A, B = B)$X

[1] 0.3333333 0.3333333 1.6666667 -0.3333333
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Function xsample randomly samples the underdetermined problem (using the metropolis
algorithm), selecting likely values given the approximate equations. The probability distri-
bution of the latter is assumed Gaussian, with given standard deviation (argument sdB, here
assumed 1). (Van den Meersche et al. 2009)
The jump length (argument jmp) is finetuned such that a sufficient number of trials (˜ 30%),
but not too many, is accepted. Note how the ultimate distribution is determined both by the
inequality constraints (the sharp edges) as well as by the approximate equations (figure 4).

> panel.dens <- function(x, ...) {
+ usr <- par("usr")
+ on.exit(par(usr))
+ par(usr = c(usr[1:2], 0, 1.5) )
+ DD <- density(x)
+ DD$y<- DD$y/max(DD$y)
+ polygon(DD, col = "grey")
+ }
> xs <- xsample(E = E, F = F, G = G, H = H, A = A, B = B,
+ jmp = 0.5, sdB = 1)$X
> pairs(xs, pch = ".", cex = 2,
+ upper.panel = NULL, diag.panel = panel.dens)

4.4. Equalities and inequalities and a target function

Another way to single out one solution out of the infinite amount of valid solutions is by
minimising or maximising a linear target function, using linear programming. For instance,

min(x1 + 2 · x2 − 1 · x3 + 4 · x4)

subject to :

3 · x1 +2 · x2 +x3 +4 · x4 = 2
x1 +x2 +x3 +x4 = 2

2 · x1 +x2 +x3 +x4 ≥ −1
−1 · x1 +3 · x2 +2 · x3 +x4 ≥ 2
−1 · x1 +x3 ≥ 1

xi ≥ 0 ∀i

is implemented in R as:

> E <- matrix(ncol = 4, byrow = TRUE,
+ data = c(3, 2, 1, 4, 1, 1, 1, 1))
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Figure 4: Random sample of the underdetermined system including equalities, inequalities,
and approximate equations. See text for explanation.
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> F <- c(2, 2)
> G <-matrix(ncol = 4, byrow = TRUE,
+ data = c(2, 1, 1, 1, -1, 3, 2, 1, -1, 0, 1, 0))
> H <- c(-1, 2, 1)
> Cost <- c(1, 2, -1, 4)
> linp(E, F, G, H, Cost)

$X
[1] 0 0 2 0

$residualNorm
[1] 0

$solutionNorm
[1] -2

$IsError
[1] FALSE

$type
[1] "linp"

The positivity requirement (xi ≥ 0) is -by default- part of the linear programming problem,
unless it is toggled off by setting argument ispos equal to FALSE.

> LP <- linp(E = E, F = F, G = G, H = H, Cost = Cost, ispos = FALSE)
> LP$X

[1] -3.00 -6.75 7.50 4.25

> LP$solutionNorm

[1] -7

5. solving sets of linear equations with sparse matrices
limSolve contains special-purpose solvers to efficiently solve linear systems of equations Ax =
B where the nonzero elements of matrix A are located near the diagonal.
They include:

• Solve.tridiag when the A matrix is tridiagonal. i.e. the non-zero elements are on the
diagonal, below and above the diagonal.

• Solve.banded when the A matrix has nonzero elements in bands on, above and below
the diagonal.
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• Solve.block when the A matrix is block-diagonal.

5.1. solve, Solve.tridiag, Solve.banded

In the code below, a tridiagonal matrix is created first, and solved with the default R
method solve, followed by the banded matrix solver Solve.band, and the tridiagonal solver
Solve.tridiag.
The A matrix contains 500 rows and 500 columns, and the problem is solved for 10 different
vectors B.
We start by defining the non-zero bands on (bb), below (aa) and above (cc) the diagonal,
required for input to the tridiagonal solver; we prepare the full matrix A necessary for the
default solver and the banded matrix abd, required for the banded solver.

> nn <- 500

Input for the tridiagonal system:

> aa <- runif(nn-1)
> bb <- runif(nn)
> cc <- runif(nn-1)

The full matrix has the nonzero elements on, above and below the diagonal

> A <-matrix(nrow = nn, ncol = nn, data = 0)
> A [cbind((1:(nn-1)),(2:nn))] <- cc
> A [cbind((2:nn),(1:(nn-1)))] <- aa
> diag(A) <- bb

The banded matrix representation is more compact; the elements above and below the diag-
onal need padding with 0:

> abd <- rbind(c(0,cc), bb, c(aa,0))

Parts of the input are:

> A[1:5, 1:5]

[,1] [,2] [,3] [,4] [,5]
[1,] 0.9224130 0.9442238 0.0000000 0.0000000 0.0000000
[2,] 0.5434298 0.8037264 0.6721085 0.0000000 0.0000000
[3,] 0.0000000 0.8566032 0.5529966 0.6034861 0.0000000
[4,] 0.0000000 0.0000000 0.9077738 0.3293307 0.5067126
[5,] 0.0000000 0.0000000 0.0000000 0.8863633 0.4795343

> aa[1:5]

[1] 0.5434298 0.8566032 0.9077738 0.8863633 0.9457666
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> bb[1:5]

[1] 0.9224130 0.8037264 0.5529966 0.3293307 0.4795343

> cc[1:5]

[1] 0.9442238 0.6721085 0.6034861 0.5067126 0.5665065

> abd[ ,1:5]

[,1] [,2] [,3] [,4] [,5]
0.0000000 0.9442238 0.6721085 0.6034861 0.5067126

bb 0.9224130 0.8037264 0.5529966 0.3293307 0.4795343
0.5434298 0.8566032 0.9077738 0.8863633 0.9457666

The right hand side consists of 10 vectors:

> B <- runif(nn)
> B <- cbind(B, 2*B, 3*B, 4*B, 5*B, 6*B, 7*B, 8*B, 9*B, 10*B)

The problem is then solved using the three different solvers. The duration of the computation
is estimated and printed in milliseconds. print(system.time()*1000) does this. 2

> print(system.time(Full <- solve(A, B))*1000)

user system elapsed
4 0 5

> print(system.time(Band <- Solve.banded(abd, nup = 1, nlow = 1, B))*1000)

user system elapsed
0 0 1

> print(system.time(tri <- Solve.tridiag(aa, bb, cc, B))*1000)

user system elapsed
0 0 0

The solvers return 10 solution vectors X, one for each right-hand side; we show the first 5:

> Full[1:5, 1:5]
2Note that the banded and tridiagonal solver are so efficient (on my computer) that these systems are

solved quasi-instantaneously even for 10000*10000 problems and the time returned = 0.
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B
[1,] -0.3374131 -0.6748263 -1.012239 -1.349653 -1.687066
[2,] 0.4755942 0.9511885 1.426783 1.902377 2.377971
[3,] 0.3863637 0.7727274 1.159091 1.545455 1.931818
[4,] 0.5269442 1.0538885 1.580833 2.107777 2.634721
[5,] -0.3913126 -0.7826251 -1.173938 -1.565250 -1.956563

Comparison of the different solutions (here only for the second vector) show that they yield
the same result.

> head(cbind(Full=Full[,2],Band=Band[,2], Tri=tri[,2]))

Full Band Tri
[1,] -0.6748263 -0.6748263 -0.6748263
[2,] 0.9511885 0.9511885 0.9511885
[3,] 0.7727274 0.7727274 0.7727274
[4,] 1.0538885 1.0538885 1.0538885
[5,] -0.7826251 -0.7826251 -0.7826251
[6,] 2.1179759 2.1179759 2.1179759

Banded matrices in the Matrix package

The same can be done with functions from R-package Matrix (Bates and Maechler 2008).
To create the tridiagonal matrix, the position of the non-zero bands relative to the diagonal
must be specified; k = -1:1 sets this to one band below, the band on and one band above
the diagonal. The non-zero bands (diag) are then inputted as a list.
Solving the linear system this way is only slightly slower. However, Matrix provides many
more functions operating on sparse matrices than does limSolve !.

SpMat <- bandSparse(nn, nn, k = -1:1, diag = list(aa, bb, cc))
Tri <- solve(SpMat, B)

5.2. Solve.block

A block diagonal system is one where the nonzero elements are in "blocks" near the diagonal.
For the following A-matrix:
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0.0 −0.98 −0.79 −0.15 Top
−1.00 0.25 −0.87 0.35 Top
0.78 0.31 −0.85 0.89 −0.69 −0.98 −0.76 −0.82 blk1
0.12 −0.01 0.75 0.32 −1.00 −0.53 −0.83 −0.98

−0.58 0.04 0.87 0.38 −1.00 −0.21 −0.93 −0.84
−0.21 −0.91 −0.09 −0.62 −1.99 −1.12 −1.21 0.07

0.78 −0.93 −0.76 0.48 −0.87 −0.14 −1.00 −0.59 blk2
−0.99 0.21 −0.73 −0.48 −0.93 −0.91 0.10 −0.89
−0.68 −0.09 −0.58 −0.21 0.85 −0.39 0.79 −0.71
0.39 −0.99 −0.12 −0.75 −0.68 −0.99 0.50 −0.88

0.71 −0.64 0.0 0.48 Bot
0.08 100.0 50.00 15.00 Bot


> # 0.0 -0.98 -0.79 -0.15 Top
> # -1.00 0.25 -0.87 0.35 Top
> # 0.78 0.31 -0.85 0.89 -0.69 -0.98 -0.76 -0.82 blk1
> # 0.12 -0.01 0.75 0.32 -1.00 -0.53 -0.83 -0.98
> # -0.58 0.04 0.87 0.38 -1.00 -0.21 -0.93 -0.84
> # -0.21 -0.91 -0.09 -0.62 -1.99 -1.12 -1.21 0.07
> # 0.78 -0.93 -0.76 0.48 -0.87 -0.14 -1.00 -0.59 blk2
> # -0.99 0.21 -0.73 -0.48 -0.93 -0.91 0.10 -0.89
> # -0.68 -0.09 -0.58 -0.21 0.85 -0.39 0.79 -0.71
> # 0.39 -0.99 -0.12 -0.75 -0.68 -0.99 0.50 -0.88
> # 0.71 -0.64 0.0 0.48 Bot
> # 0.08 100.0 50.00 15.00 Bot

and the right hand side:

> B <- c(-1.92, -1.27, -2.12, -2.16, -2.27, -6.08,
+ -3.03, -4.62, -1.02, -3.52, 0.55, 165.08)

The input to the block diagonal solver is as:.

> Top <- matrix(nrow = 2, ncol = 4, byrow = TRUE, data =
+ c( 0.0, -0.98, -0.79, -0.15, -1.00, 0.25, -0.87, 0.35))
> Bot <- matrix(nrow = 2, ncol = 4, byrow = TRUE, data =
+ c( 0.71, -0.64, 0.0, 0.48, 0.08, 100.0, 50.00, 15.00))
> Blk1 <- matrix(nrow = 4, ncol = 8, byrow = TRUE, data =
+ c( 0.78, 0.31, -0.85, 0.89, -0.69, -0.98, -0.76, -0.82,
+ 0.12, -0.01, 0.75, 0.32, -1.00, -0.53, -0.83, -0.98,
+ -0.58, 0.04, 0.87, 0.38, -1.00, -0.21, -0.93, -0.84,
+ -0.21, -0.91, -0.09, -0.62, -1.99, -1.12, -1.21, 0.07))
> Blk2 <- matrix(nrow = 4, ncol = 8, byrow = TRUE, data =
+ c( 0.78, -0.93, -0.76, 0.48, -0.87, -0.14, -1.00, -0.59,
+ -0.99, 0.21, -0.73, -0.48, -0.93, -0.91, 0.10, -0.89,
+ -0.68, -0.09, -0.58, -0.21, 0.85, -0.39, 0.79, -0.71,
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+ 0.39, -0.99, -0.12, -0.75, -0.68, -0.99, 0.50, -0.88))
> AR <- array(dim = c(4,8,2), data = c(Blk1, Blk2))
> AR

, , 1

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 0.78 0.31 -0.85 0.89 -0.69 -0.98 -0.76 -0.82
[2,] 0.12 -0.01 0.75 0.32 -1.00 -0.53 -0.83 -0.98
[3,] -0.58 0.04 0.87 0.38 -1.00 -0.21 -0.93 -0.84
[4,] -0.21 -0.91 -0.09 -0.62 -1.99 -1.12 -1.21 0.07

, , 2

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 0.78 -0.93 -0.76 0.48 -0.87 -0.14 -1.00 -0.59
[2,] -0.99 0.21 -0.73 -0.48 -0.93 -0.91 0.10 -0.89
[3,] -0.68 -0.09 -0.58 -0.21 0.85 -0.39 0.79 -0.71
[4,] 0.39 -0.99 -0.12 -0.75 -0.68 -0.99 0.50 -0.88

The blocks overlap with 4 columns; the system is solved as:

> overlap <- 4
> Solve.block(Top, AR, Bot, B, overlap=4)

[,1]
[1,] 1
[2,] 1
[3,] 1
[4,] 1
[5,] 1
[6,] 1
[7,] 1
[8,] 1
[9,] 1

[10,] 1
[11,] 1
[12,] 1

Without much loss of speed, this system can be solved for several right-hand sides; here we
do this for 1000! B-values

> B3 <- B
> for (i in 2:1000) B3 <- cbind(B3, B*i)
> print(system.time(X<-Solve.block(Top,AR,Bot,B3,overlap=4))*1000)

user system elapsed
0 0 0
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> X[,c(1,10,100,1000)]

[,1] [,2] [,3] [,4]
[1,] 1 10 100 1000
[2,] 1 10 100 1000
[3,] 1 10 100 1000
[4,] 1 10 100 1000
[5,] 1 10 100 1000
[6,] 1 10 100 1000
[7,] 1 10 100 1000
[8,] 1 10 100 1000
[9,] 1 10 100 1000

[10,] 1 10 100 1000
[11,] 1 10 100 1000
[12,] 1 10 100 1000

Note: This implementation of block diagonal matrices differs from the implementation in the
Matrix package.

6. datasets
There are five example applications in package limSolve :

• Blending. In this underdetermined problem, an optimal composition of a feeding mix is
sought such that production costs are minimised subject to minimal nutrient constraints.
The problem consists of one equality and 4 inequality conditions, and a cost function.
It is solved by linear programming (linp). Feasible ranges are estimated (xranges) and
feasible solutions generated (xsample)

• Chemtax. This is an overdetermined linear inverse problem, where the algal composition
of a (field) sample is estimated based on (experimentally-determined) pigment biomark-
ers (Mackey, Mackey, Higgins, and Wright 1996). See also R -package BCE (Van den
Meersche and Soetaert 2009), (Van den Meersche, Soetaert, and Middelburg 2008). The
problem contains 8 unknowns; it consists of 1 equality, 12 approximate equations, and
8 inequalities. It is solved using lsei and xsample.

• Minkdiet. This is another -underdetermined- compositional estimation problem, where
the diet composition of Southeast Alaskan Mink is estimated, based on the C and N
isotopic ratios of Mink and of its prey items (Ben-David, Hanley, Klein, and Schell
1997). The problem consists of 7 unknowns, 3 equations, and 7 inequalities

• RigaWeb. This is a food web problem, where food web flows of the Gulf of Riga plank-
tonic food web in Spring are quantified (Donali, Olli, Heiskanen, and Andersen 1999).
This underdetermined model comprises 26 unknowns, 14 equalities, and 45 inequalities.
It is solved by lsei, xranges, and xsample.

• E_coli. This is a flux balance problem, estimating the core metabolic fluxes of Es-
cherichia coli (Edwards, Covert, and Palsson 2002). It is the largest example included
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in limSolve . There are 70 unknowns, 54 equalities and 62 inequalities, and one function
to maximise. This model is solved using lsei, linp, xranges, and xsample.

7. Notes
Package limSolve provides FORTRAN implementations of:

• the least distance algorithms from (Lawson and Hanson 1974) (ldp, ldei, nnls).

• the least squares with equality and inequality algorithms from (Haskell and Hanson
1978) (lsei).

• a solver for banded linear systems from LAPACK (Dongarra, Bunch, Moler, and Stewart
1979).

• a solver for block diagonal linear systems from LAPACK (Dongarra et al. 1979).

• a solver for tridiagonal linear systems from LAPACK (Dongarra et al. 1979).

In addition, the package provides a wrapper around functions:

• function lp from package lpSolve (Berkelaar et al. 2007)

• function solve.QP from package quadprog (Weingessel 2007)

This way, similar input can be used to solve least distance, least squares and linear program-
ming problems. Note that the packages lpSolve and quadprog provide more options than
used here.
For solving linear programming problems, lp from lpSolve is the only algorithm included. It
is also the most robust linear programming algorithm we are familiar with.
For quadratic programming, we added the code lsei, which in our experience often gives a
valid solution whereas other functions (including solve.QP) may fail.
Finalisation of this package was done using R-Forge (http://r-forge.r-project.org/), the
framework for R project developers, based on GForge and tortoiseSVN (http://tortoisesvn.
net/) for (sub) version control.
This vignette was created using Sweave (Leisch 2002).
The package is on CRAN, the R-archive website ((R Development Core Team 2008))
More examples can be found in the demo of package limSolve ("demo(limSolve)")
Another R -package, LIM (Soetaert and van Oevelen 2009; van Oevelen, van den Meersche,
Meysman, Soetaert, Middelburg, and Vezina 2009) is designed for reading and solving linear
inverse models (LIM). The model problem is formulated in text files in a way that is natural
and comprehensible. LIM then converts this input into the required linear equality and
inequality conditions, which can be solved by the functions in package limSolve .
A list of all functions in limSolve is in table (1).

http://r-forge.r-project.org/
http://tortoisesvn.net/
http://tortoisesvn.net/
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Table 1: Summary of the functions in package limSolve

Function Description
Solve Finds the generalised inverse solution of A · x = b
Solve.banded Solves a banded system of linear equations
Solve.tridiag Solves a tridiagonal system of linear equations
Solve.block Solves a block diagonal system of linear equations
ldei Least distance programming with equality and inequality conditions
ldp Least distance programming (only inequality conditions)
linp Linear programming
lsei Least squares with equality and inequality conditions
nnls Nonnegative least squares
resolution Row and column resolution of a matrix
xranges Calculates ranges of unknowns
varranges Calculates ranges of variables (linear combinations of unknonws)
xsample Randomly samples a linear inverse problem for the unknowns
varsample Randomly samples a linear inverse problem for the inverse variables
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